LMG670

Precision Power Analyzer

Power Analysis ${ }^{2}$

Two Bandwidths Simultaneously

Single-shot results for narrowband, broadband \& harmonics measurements

Powerful

7 channels, DualPath, accuracy 0.025%, DC -10 MHz , excellent dynamic range $\mu \mathrm{A}$ to kA and mV to kV

Convenient

Touchscreen, 8,9" WSVGA display (1024×600), remote control via PC, Gbit Ethernet, DVI/VGA interface

Flexible

Measuring frequency converters, e-machines, transformers, power electronics, power supplies

A New Generation of Power Analyzers

For decades, the letters "LMG" have been synonymous with precision power analysis technology developed and manufactured by ZES ZIMMER. The LMG series has conquered a leading market position thanks to its precision and reliability. It has spread throughout the most diverse areas of the electric and electronic industry - in R\&D, quality assurance and compliance test labs - and serves universities and academies to train future scientists and engineers.
With our new LMG670 we not only enable you to cope with increased requirements and latest power electronics innovations we allow you to put yourself and your products squarely in front of the competition. In times of beginning scarcity of conventional fuels, power analysis plays an important and growing role, especially when it comes to increasing efficiency and minimizing consumption. Wherever electrical energy is turned into motion, losses get scrutinized ever more critically. Inefficient means of speed control are replaced by variable frequency drives (VFD), and electro mobility in all its varieties is gaining momentum. ZES ZIMMER has attended to typical questions in this area und came up with a groundbreaking innovation: our DualPath architecture makes possible - for the first time in history - concurrent and precise analysis of both the torque-relevant fundamental and the full spectrum for optimization of overall efficiency.

Besides this spectacular innovation we have also implemented numerous other improvements - some obvious, some rather inconspicuous. We have been exclusively dedicated to precision power analysis and sophisticated measurements for decades and have incorporated the resulting treasure trove of experience into the design of the LMG670. It is our ambition to provide you with precise and reliable results fast so you can carry out your measurement tasks in an efficient manner!

Dipl.-Ing. Georg Zimmer and Dr. Conrad Zimmer Managing Directors
ZES ZIMMER Electronic Systems GmbH

With the highest density of power measurement channels per chassis and an unsurpassed combination of precision and bandwidth the LMG670 is the instrument of choice for sophisticated efficiency measurements in complex electrical systems.

Technical Data (Summary)

Accuracy A1 channel	\pm (\% of measured value + \% of maximum peak value)									
	DC	$\begin{gathered} 0.05 \mathrm{~Hz} \ldots 4 \mathrm{~Hz} \\ 65 \mathrm{~Hz} . . .3 \mathrm{kHz} \end{gathered}$	45 Hz ... 65 Hz	$3 \mathrm{kHz} . . .10 \mathrm{kHz}$	10 kHz ... 50 kHz	50 kHz ... 100 kHz	100 kHz ... 500 kHz	$500 \mathrm{kHz} . . .1 \mathrm{MHz}$	1 MHz ... 2 MHz	$2 \mathrm{MHz} . . .10 \mathrm{MHz}$
Voltage U*	$0.02+0.08$	$0.015+0.03$	$0.01+0.02$	$0.03+0.06$	0.2+0.4		0.5+1.0	0.5+1.0	$\mathrm{f} / 1 \mathrm{MHz}^{*} 1.5+\mathrm{f} / 1 \mathrm{MHz}^{*} 1.5$	
Voltage $\mathrm{U}_{\text {SEESOR }}$	$0.02+0.08$	$0.015+0.03$	$0.01+0.02$	$0.03+0.06$	0.2+0.4		$0.4+0.8$	$0.4+0.8$	$\mathrm{f} / 1 \mathrm{MHz}^{*} 0.7+\mathrm{f} / 1 \mathrm{MHz}{ }^{*} 1.5$	
$\begin{aligned} & \text { Current I* } \\ & 5 \mathrm{~mA} . . .5 \mathrm{~A} \end{aligned}$	$0.02+0.08$	0.015+0.03	$0.01+0.02$	$0.03+0.06$	0.2+0.4		0.5+1.0	0.5+1.0	$\begin{aligned} & \mathrm{f} / 1 \mathrm{MHz}^{*} 1.0+ \\ & \mathrm{f} / 1 \mathrm{MHz} * 2.0 \end{aligned}$	-
Current I* 10A...32A	$0.02+0.08^{1)}$	$\left.0.015+0.03^{3}\right)$	$0.01+0.02^{3)}$	$\left.0.1+0.2^{3}\right)$	$0.3+0.6{ }^{\text {6 }}$	$\left.\mathrm{f} / 100 \mathrm{kHz} z^{*} 0.8+\mathrm{f} / 100 \mathrm{kHz}{ }^{*} 1.23^{3}\right)$		-	-	-
Current $\mathrm{I}_{\text {SEESOOR }}$	$0.02+0.08$	$0.015+0.03$	$0.01+0.02$	$0.03+0.06$	0.2+0.4		$0.4+0.8$	$0.4+0.8$	$\mathrm{f} / 1 \mathrm{MHz}^{*} 0.7+\mathrm{f} / 1 \mathrm{MHz}^{*} 1.5$	
$\begin{aligned} & \text { Power } \mathrm{U}^{*} / \mathrm{I}^{*} \\ & 5 \mathrm{~mA} . . .5 \mathrm{~A} \end{aligned}$	$0.032+0.08$	0.024+0.03	$0.015+0.01$	0.048+0.06	0.32+0.4		0.8+1.0	0.8+1.0	$\begin{gathered} \mathrm{f} / 1 \mathrm{MHz}^{*} 2.0+ \\ \mathrm{f} / 1 \mathrm{MHz}^{*} 1.8 \end{gathered}$	-
$\begin{aligned} & \text { Power U*/ I* } \\ & \text { 10A... } 32 \mathrm{~A} \end{aligned}$	$0.032+0.08^{2}$	$0.024+0.03^{4}$	$0.015+0.01^{4}$	$\left.0.104+0.13^{4}\right)$	$0.4+0.5{ }^{4}$	$\mathrm{f} / 100 \mathrm{kHz}^{*} 0.8+$ $\left.\mathrm{f} / 100 \mathrm{kHz}^{*} 0.8^{4}\right)$	$\mathrm{f} / 100 \mathrm{kHz}^{*} 1.0+$ $\mathrm{f} / 100 \mathrm{kHz} \mathrm{*}^{*} 1.1^{4)}$	-	-	-
Power U*/ $\mathrm{I}_{\text {SESGOR }}$	$0.032+0.08$	0.024+0.03	$0.015+0.01$	0.048+0.06	0.32+0.4		0.72+0.9	0.72+0.9	$\mathrm{f} / 1 \mathrm{MHz}^{*} 1.8+\mathrm{f} / 1 \mathrm{MHz}^{*} 1.5$	
$\begin{aligned} & \text { Power } \mathrm{U}_{\text {SENSOR }} / \mathrm{I}^{*} \\ & 5 \mathrm{~mA} \ldots . .5 \mathrm{~A} \end{aligned}$	$0.032+0.08$	0.024+0.03	$0.015+0.01$	0.048+0.06	0.32+0.4		0.72+0.9	0.72+0.9	f/1 MHz*1.4 + $\mathrm{f} / 1 \mathrm{MHz}^{*} 1.8$	-
$\begin{aligned} & \text { Power } \mathrm{U}_{\text {sassor }} / \mathrm{I}^{*} \\ & 10 \mathrm{~A} . . .32 \mathrm{~A} \end{aligned}$	$0,032+0.08^{2}$	$0.024+0.03^{4}$	$0.015+0.01^{4}$	$\left.0.104+0.13^{4}\right)$	$0.4+0.5^{4}$	f/100kHz*0.8 + $\mathrm{f} / 100 \mathrm{kHz}^{*} 0.8^{4}$	f/100kHz*1.0 + $\left.\mathrm{f} / 100 \mathrm{kHz}{ }^{*} 1.0^{4}\right)$	-	-	-
Power $\mathrm{U}_{\text {Selvor }} / \mathrm{I}_{\text {SEESOR }}$	$0.032+0.08$	$0.024+0.03$	$0.015+0.01$	$0.048+0.06$	0.32+0.4		$0.64+0.8$	$0.64+0.8$	$\mathrm{f} / 1 \mathrm{MHz}^{*} 1.1+\mathrm{f} / 1 \mathrm{MHz}^{*} 1.5$	
Accuracy B1 channel	\pm (\% of measured value $+\%$ of maximum peak value)									
	DC	$\begin{gathered} 0,05 \mathrm{~Hz} \ldots 4 \mathrm{~Hz} \\ 65 \mathrm{~Hz} . . .1 \mathrm{kHz} \end{gathered}$		$45 \mathrm{~Hz} \ldots 65 \mathrm{~Hz}$	1 kHz ... 5 kHz		5 kHz ... 20 kHz	20 kHz ... 100 kHz		100 kHz ... 500 kHz
Voltage U*	0.1+0.1	0.1+0.1		$0.05+0.05$	0.2+0.2		0.3+0.4	$0.4+0.8$		f/100 $\mathrm{KHz}^{*} 0.8$ + $\mathrm{f} / 100 \mathrm{kHz}{ }^{*} 1.2$
Current I* $5 \mathrm{~mA} . . .5 \mathrm{~A}$ Current $\mathrm{I}_{\text {SENSOR }}$	0.1+0.1	0,.1+0.1		$0.05+0.05$	0.2+0.2		0.3+0.4	$0.4+0.8$		f/100 $\mathrm{KHz}^{*} 0.8+$ f/100kHz*1.2
Current I* 10A...32A Bereich	$0.1+0.1^{11}$	$0.1+0.1^{3}$		$0.05+0.05^{3}$	$0.2+0.2^{3}$		$\left.0.6+1.2^{3}\right)$	1.5+1.53)		f/100 KHz*2.0 + $\mathrm{f} / 100 \mathrm{kHz} z^{*} . \mathrm{O}^{3}$
Power U*/ I* $5 \mathrm{~mA} . . .5 \mathrm{~A}$ Power U*/ $\mathrm{I}_{\text {sensor }}$	$0.16+0.1$	0.16+0.1		$0.07+0.04$	0.32+0.2		0.48+0.4	0.64+0.8		f/100kHz*1.28 + $\mathrm{f} / 100 \mathrm{kHz}^{*} 1.2$
$\begin{aligned} & \text { Power U*/ I* } \\ & \text { 10A... } 32 \mathrm{~A} \end{aligned}$	$0.16+0.1^{2 /}$	$0.16+0.14)$		0.07+0.04 ${ }^{\text {4 }}$	$0.32+0.2^{4}$		$0.72+0.84$	1.52+1.15 ${ }^{4}$		f/100kHz**2.24 + $\mathrm{f} / 100 \mathrm{kHz}^{*} 1.6^{4}$
Accuracy C1 channel	\pm (\% of measured value $+\%$ of maximum peak value)									
	DC	$\begin{aligned} & 0,05 \mathrm{~Hz} \ldots 45 \mathrm{~Hz} \\ & 65 \mathrm{~Hz} \ldots 200 \mathrm{~Hz} \end{aligned}$		$45 \mathrm{~Hz} . . .65 \mathrm{~Hz}$	200 Hz ... 500 Hz		$500 \mathrm{~Hz} \ldots .1 \mathrm{kHz}$	1 kHz ... 2kHz		2 kHz ... 10kHz
Voltage U*	0.1+0.1	0.02+0.05		0.02+0.02	$0.05+0.05$		0.2+0.1	1.0+0.5		$\begin{gathered} \mathrm{f} / 1 \mathrm{kHz} z^{*} 1.0+ \\ \mathrm{f} / 1 \mathrm{kHz}^{*} 1.0 \end{gathered}$
Current I*	$0.1+0.1^{1)}$	$0.02+0.05^{3)}$		$0.02+0.02^{33}$	$0.05+0.05^{3)}$		$\left.0.2+0.1^{3}\right)$	$1.0+0.5^{3}$		f/1 kHz* 1.0 + $\left.\mathrm{f} / 1 \mathrm{kHz}{ }^{*} 1.0^{3}\right)$
Current $\mathrm{I}_{\text {Sessor }}$	0.1+0.1	0.02+0.05		$0.02+0.02$	$0.05+0.05$		0.2+0.1	1.0+0.5		$\mathrm{f} / 1 \mathrm{kHz} z^{*} 1.0+$ $\mathrm{f} / 1 \mathrm{kHz}^{*} 1.0$
Power	$0.16+0.1^{2}$	$0.032+0.05^{4}$		$0.03+0.01^{44}$	$0.08+0.054$		$0.32+0.14)$	$1.6+0.5^{4}$		$\mathrm{f} / 1 \mathrm{kHz}{ }^{*} 1.6+$ $\mathrm{f} / 1 \mathrm{kHz}{ }^{*} 1.0^{4)}$
Accuracies valid for:	1. Sinusoidal voltages and currents 2. Ambient temperature $(23 \pm 3)^{\circ} \mathrm{C}$ 3. Warm-up time 1 h 4. The upper range value is defined by the maximum peak value. 5. The upper power range value is the product of upper voltage range value and upper current range value.						6. $0 \leq\|\lambda\| \leq 1$ (power factor) 7. Current and voltage 10%... 110% of nominal value 8. Adjustment carried out at $23^{\circ} \mathrm{C}$ 9. Calibration interval 12 months			
Other values	All other values are calculated from current, voltage and power. Accuracy resp. error limits are derivated according to context$\text { (e.g. } \mathrm{S}=\mathrm{I} * \mathrm{U}, \Delta \mathrm{~S} / \mathrm{S}=\Delta \mathrm{I} / \mathrm{I}+\Delta \mathrm{U} / \mathrm{U}) \text {. }$									

${ }^{12}$ 2) 3) 44) only valid in range $10 \ldots 32 \mathrm{~A}$:

Voltage measuring ranges U^{*}														
Nominal value (V)	3		6	12.5	25		60	130		250	400	600		1000
Max. trms value (V)	3.3		6.6	13.8	27.5		66	136		270	440	660		1000
Max. peak value (V)	6		12	25	50		100	200		400	800	1600		3200
Overload protection	$1000 \mathrm{~V}+10 \%$ permanently, 1500 V for 1 s													
Input impedance	$4.59 \mathrm{M} \Omega, 3 \mathrm{pF}$													
Earth capacitance	90 pF													
Current measuring ranges I^{*}														
Nominal value (A)	0.005	0.01	0.02	0.04	0.08	0.15	0.3	0.6	1.2	2.5	5	10	20	32
Max. trms value (A)	0.0055	0.011	0.022	0.044	0.088	0.165	0.33	0.66	1.32	2.75	5.5	11	22	32
Max. peak value (A)	0.014	0.028	0.056	0.112	0.224	0.469	0.938	1.875	3.75	7.5	15	30	60	120
Input impedance	ca. 2.2Ω		ca. $600 \mathrm{~m} \Omega$			ca. $80 \mathrm{~m} \Omega$			ca. $20 \mathrm{~m} \Omega$			ca. $10 \mathrm{~m} \Omega$		
Overload protection permanent (A)	LMG in operation 10A								LMG in operation 32 A					
Overload protection short-time (A)	150 A for 10 ms													
Earth capacitance	90pF													
Sensor inputs $\mathrm{U}_{\text {SENSOR' }} \mathrm{I}_{\text {SEFSOR }}$														
Nominal value (V)	0.03		0.06	0.12		0.25		0.5		1		2	4	
Max. trms value (V)	0.033		0.066	0.132		0.275		0.55		1,1		2,2	4.4	
Max. peak value (V)	0.0977		0.1953		. 3906	0.7813		1.563		3.125		6.25	12.5	
Overload protection	100 V permanently, 250 V for 1 s													
Input impedance	100 k , 34 pF													
Earth capacitance	90 pF													
Isolation	All current and voltage inputs are isolated against each other, against remaining electronics and against earth Max. 1000 V / CAT III resp. 600 V / CAT IV													
Synchronization	Measurements are synchronized on the signal period. The period is determined based on „line", „external", $u(t)$ or $\mathrm{i}(\mathrm{t})$, in combination with configurable filters. Therefore very stable readings, especially with PWM controlled frequency converters and amplitude modulated electronic loads.													
Scope function	Graphical display of sample values over time													
Plot function	Two time (trend-) diagrams of max. 8 parameters, max. resolution 30 ms													
External graphics interface (L6-OPT-DVI)	VGA/DVI interface for external screen output													
Process signal interface (L6-OPT-PSI)	2 fast analog inputs ($150 \mathrm{kS} / \mathrm{s}, 16$ bit, BNC) 8 analog inputs ($100 \mathrm{~S} / \mathrm{s}, 16$ bit, D-Sub:DE-09) 32 analog outputs (output per cycle, 14 bit, D-Sub: DA-15 \& DB-25) 8 switching outputs (6 switches with 2 connections each and 2 switching outputs with common negative, D-Sub: DB-25) 8 switching inputs ($150 \mathrm{kS} / \mathrm{s}$, in two groups 4 inputs each with common ground, D-Sub: DB-25) Speed-/torque-/frequency inputs ($150 \mathrm{kS} / \mathrm{s}, \mathrm{D}-\mathrm{Sub}: \mathrm{DA}-15$)													
Star-delta conversion (L6-OPT-SDC)	Conversion of line voltages to phase voltages and computation of resulting power													
Harmonics at device level (L6-OPT-HRM)	Harmonics and interharmonics up to max. 400. order (2,000. order with interharmonics)													
Flicker (L6-OPT-FLK)	According to EN 61000-4-15													
LMG-Control	LMG600 expansion software, basic module for remote configuration and operation via PC													
TEST-CE61K	LMG600 software for conformity tests according to EN61000 for harmonics and flicker													
Miscellaneous Dimensions Weight Protection class Electromagnetic compatibility Temperature Climatic category Line input	Table-top version for 7 slots: (WxHxD) $433 \mathrm{~mm} \times 177 \mathrm{~mm} \times 590 \mathrm{~mm}, 19^{\prime \prime}$ version for 7 slots: (WxHxD) $84 \mathrm{HP} \times 4 \mathrm{RU} \times 590 \mathrm{~mm}$ Depending on installed options: max. 18.5 kg EN 61010 (IEC 61010, VDE 0411), protection class I / IP20 in accordance with EN 60529 EN 61326 $0 \ldots 40^{\circ} \mathrm{C}$ (operation) / $-20 \ldots 50^{\circ} \mathrm{C}$ (storage) Normal environmental conditions according to EN 61010 $100 \ldots 230 \mathrm{~V}, 47 \ldots 63 \mathrm{~Hz}$, max. 400 W													

